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The thermodynamics of curved boundary I;~yers is combined with scaled 
particle theory to determine the rigid-sphere equation of state, in particular, 
the boundary analog of the Gibbs--l-olman-.Koenig-l~uff equation is solved 
for a rigid-sphere fluid, using the approximation that the distance between 
the surface of a cavity and its surface of tension is a function of the density 
only (the first-order approximation). This, in conjunction with several exact 
conditions on G, the central function of scaled particle theory, leads to an 
approximate rigid-sphere fluid equation of state and a qualitatively correct 
rigid-sphere solid equation of state. The fluid isotherm compares favorably 
with previous results (2.9 ~ error in the fourth virial coefficient), but due 
to the inaccuracy of the solid isotherm, no phase transition is obtained. The 
theory described here is to be contrasted with previous approaches in that 
a less arbitrary functional form for G is ;tssun~cd, and the surface of tension 
and cavity surface are not assumed to bc coincident. "lhe "cycle equation" 
of Reiss and Tully-Smith is rederivcd by a simpler route and shown to be 
correct to all orders of cavity curvature, rather than only first order as was 
originally thought. A new exact condition, obtained from the compressibility 
equation of state, is used as a boundary condition for the "'cycle equation" 
to determine the location of the equimolccular surface. This molecular 
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calculation compares favorably (discrepancy of - 2 ~/o) with a thermodynamic 
calculation based on the boundary analog of the Gibbs adsorption equation 
and indicates the accuracy anti consistency of the first-order approximation. 

KEY WORDS:  Statistical thermodynamics of curved boundary layers; scaled 
particle theory;equation of state; cycle equation; fluid-solid phase transition. 

1. I N T R O D U C T I O N  

In a recent paper, Reiss and Tully-Smith <~ applied some ideas derived from 
the statistical thermodynamics of c.rved surfaces to scaled particle theory. 
In a later paper, Vicceli and Reiss ~' showed that Reiss and Tully-Smittl 
had employed the thermodynamic I'ormalism appropriate tO hTterfacial 
layers, whereas they should have developed a formalism specific to the 
boundary layer involved in scaled particle theory, Although the entire 
philosophy of  Re[: 1 and most of its conclusions retain their validity, some 
of the relations must be changed. These changes are not, however, quanti- 
tatively large. Vieceli and Reisr 2~ developed the appropriate thermodynamic 
formalism for boundary layers in general. Some results of their development 
are: (I) a modified Gibbs-Tohnan Koenig--Buff equation, (2) a modified 
Gibbs adsorption equation, and (3) the elimination from the derivatioJ~ of 
any dependence on edge effects associated with conical or wedge-shaped 
containers. 

In the present paper, we reformulate the Reiss and Tully-Smith approach 
using the more appropriate boundary layer formalism and obtain the correct 
quantitative results. In addition, the theory is extended and analyzed beyond 
the point to which it was carried by Reiss and Tully-Smith. For example, 
we are now able to obtain two equations o1" state for rigid spheres, one of 
which, although necessarily very approximate (since the thermodynamic 
formalism is not designed for solid surfaces), corresponds to the solid phase. 
In addition, a new exact condition obtained from the compressibility equation 
of state is derived. Several other results o1 direct importance to the statistical 
thermodynamics of curved surfaces are also obtained and will be discussed 
in the body of the text. 

2. S O M E  P R E L I M I N A R Y  R E L A T I O N S  

C, onsider a system of N rigid spheres o1" diameter a in a ~phericat 
container of volume V, with radius R, at temperature T. A basic equation 
of scaled particle theory relating moiecular and thermodynamic variables 
for this system is la) 

?,W/~r =:: 4=r'-'k TpG(r, p) (1 )  
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In this equation, W is the reversible isothermal work required to produce 
a spherical cavity of  radius r free of particle centers, p is the number density 
( - -  N / V )  of rigid spheres, k is the Boltzmann constant, and 4,-rrepG(r, p) dr 

is the probability that there is a particle center in the spherical shell between 
r and r : dr when the cavity is known to be free of  particle centers. Note 
that it has been customary to think of  the cavity (an "r-cule") as being 
generated by another rigid sphere of diameter b, such that r -= (a -t- b)/2. It 
is implicitly assumed that besides T, N and V are also held constant. Since 
the system is macroscopic, we can, without loss of gcnerality, place the 
cavity at the center of  the container, a sphere of radius R, and define the 
geometric variables 

V 1 = ~ ( a . : ' - - r  ~) (2) 

v~ .... - ~ R : '  -- a / )  (3) 

A.~-- 47ra~:' (4) 

where a~ is the radius of another sphere, concentric with both the cavity 
and the container, which will play the role of a Gibbs dividing surface. 
In fact, the subscript s implies a particular dividing surface which, following 
Gibbs, we will call the "surlhce of  tension". Clearly, V~ is the volume between 
the cavity and the surface of tension, V 2 is tile volume between the container 
wall and the surface of tension, while A.~ is the area of the surface of tension. 
From Ref. 2, the change in Helmholtz free energy of a portion of the fluid 
contained within fixed a solid angle and having 7' and N fixed is given by 

dF - --px dVI - p dVe "- 7~ dA~ (5) 

where 7s is the boundary tension associated with the surface of tension, 
and a,~ has been chosen so that the following relation is true: 

Px -- P .... 2y,,/a~ (6) 

In Eqs. (5) and (6), p~ and p are to be interpreted as the normal stresses 
exerted on the surfaces at r and R, respectively. Although under certain 
conditions, pz and p may be interpreted as (and in fact may be) the pressures 
within the volumes V1 and V2, respectively, they need not be, and their 
strict definitions remain the normal stresses referred to above (see Ref. 2). 
Under these conditions, the change in Hehnholtz free energy is equal to the 
work d W  appearing in Eq. (1), and under the condition of constant total 
volume, Eqs. (1), (5), and (6) may be combined to yield 

pkTG(r ,  p) = p q- (2y~/aJ (7) 
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This is an exact thermodynamic expression for G, Ilj except when the physical 
situation does not allow a~ to be positive, in which case Eq. (7) is meaningless. 
Equation (7) contains the unknown quantities p, y.,, and a~, and for our 
purposes, replaces Eq. (1) as the basic scaled particle thcory relation be- 
tween molecular and thermodynamic variables. 

In Ref. 3 [see Eqs. (14), (18), (19). (34), and (38)], several other exact 
relations involving G(r, p) are derived. Two of these are 

G(r, p) := 1/(1 -- ~Trrap), r :-. a/2 (8) 

OG(r, p)/~r := 4r -.-i~,'Tr:~t,) "-', r a/2 (9) 

The relation of  G to the hard-sphere equalion of state is oblained by noting 
the equivalence of G(a, p) and the contact generic pair correlation t'unction, ~3~ 

p =- p k T  i- i~Trl,"lh:~t;"G(a, p) (10) 

From Ref. 2, the boundary layer analog of the Gibbs. Tolman-Koenig-- 
Buff equation is 

(P +- 2"/" ][r" -- / t  . :: a~'-' (--/~:~-)o (11) 

The appropriate Gibbs adsorption equation, also derived in Ref. 2, will 
be discussed in Section 5 in connection with the "cycle equation" of Section 4. 

Previously, two approaches have been used in determining the equation 
of  state of a rigid-sphere fluid using scalcd particle theory. The earliest 
approach ~*~ involved the assumption flint G could bc expanded in inverse 
powers of r (even though it was'known that G was nonanalytic in r, having 
singularities in the second- and higher-ordc,- derivatives). Numerous exact 
boundary conditions on G [especially [-qs. (8)-(10)] were then used to 
determine the density-dependent coefficients in this expansion, and hence 
the equation of state. Although this approach gave very accurate virial 
coelticients, it did involve using a specific assumed functional form for 
G(r, p). This form is known to be corrcct in the limit of large r but is otherwise 
of unkonwn validity. In addition, there is no way to extract the solid fluid 
phase transition suggested by both Monte (.'arlo ~:'~ and molecular dynamics 
computations. ~6~ 

The later approach" '  endeavors to make no assumption (although it 
actually fails in this respect since some assumption must eventually be 
made) concerning the form of G, but instead attempts to rely on Eqs. (7)--(11) 
to specify that form. A seemingly more physically meaningful assumption 
(than that of expandability in inverse po~ers of  r with truncation after the 
quadratic term) in connection with this set of equation~ is to assume that 
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the surface of  tension and cavity surface are coincident  since there arc 

independen t  indicat ions that  they differ in posi t ion by only a small fract ion 

o f  a r igid-sphere  diameter .  When  applicd to l_!qs. (71, (8), (10), and (I I), this 
a s sumpt ion  predicts  a b o u n d a r y  tcnsion independent  of  cavity radius,  

cr . . . .  3.1/'/2(I .... y)( i 2y) (12) 

and an equation of  state 

~b = y( l  -.l y)/(1 y)(I 2y) (13) 

where we have used the dimensionless  variables 

cr =: rca"gzj3k 7" (14) 

4) rca:~/'/6t< T (1 S) 

y ,-=- =aapi6 (I 6) 

Equa t ion  (13) gives the first three virial coefficients exactly and an error  
o f  app rox ima te ly  2 0 %  in the fourth. ~ It ;llso seems to indicate a thermo-  
dynamica l ly  unstable  po in t  at  y : :  0.5 m and therefore a sol id-f luid phase 
t ransi t ion.  The work  descr ibed throughou!  tile ~, 'maindcr of  this paper  is 
a imed at  cont inuing  this later  app roach  employing  a less severe approx ima t ion  
for the locat ion of  the surface o f  tension. F'urHlermore, we apply  Eq. (9) 
as well as Eqs. (7), (8), (10), and (I I). 

In our  t rea tment ,  we al low the surface ~1 Icnsion to be displaced by 
a reduced dis tance (3 from the surface o[" the cagily,  thus relaxing the severe 

restr ict ion that  the two surfaces be coincidcr, t. H~wvevcr. we assume that 
depends  only on red uced densi ty y and not u p~m cavily radius r. l ' he  j u.~ti fica- 

tion for this assumpt ion  lies in the fact that wc apply  our  equat ions  only 
over  a l imited range o f r  between r : : a/2 and a, where a is Ihe d iameter  of  
the r ig id-sphere  molecule.  Even so, ;3 is not strictly independent  of  r and 
errors  are thcrefore  generated.  Fur the r  progress; can be made by al lowing 
~5 to depend on r in a form which depends  up,m at least two addi t ional  
funct ions o f  density;  there is enough informat ion  in our  set of  equat ions  
to cover  that  case. However ,  we have not yet advanced the theory that  far. 

If virial coefficients are the only desired information, scaled particle theory, with an 
assumed form tk~r G, gives the fourth and tiflh virial cocllicicnts with an accuracy of 2 and 
7'!(,, respectively (sec Table 11 of Ref. 4, cntr} FIL No',c thai a nmnerical error m F.q. 
(127) of Ref. 1 (24.3y 2 should be replaced by 22v L) led h~ a 32", error in,;Icad of the 
actual 20 % error in the fourth virial coefficient. The IifH1 :iriat coelticient predicted by 
Eq. (13) is 63% too high. 
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In general, we work with a reduced cavity radius x (=  r/a) and define 

u -:~ a.~/a ..... v ~,- ~(x, y) (I 7) 

In our approximation 

u .... x ~3(y) (18) 

In the next section, this approximatiol: is used in the determination of 
O(Y), 6(Y), G(x ,y) ,  a (x ,y ) ,  and the virial coefficients. In Section 4, the 
"cycle equation" of Reiss and Tully-Smith m is rederived by a simpler route 
and is shown to be valid to all orders of curvature. In Section 5, the nature 
of the approximation in Eq. (18) is examined; the cycle equation and the 
boundary layer analog for the Gibbs ,tdsoption equation are both used to 
determine the location of the equimolecular dividing surface. 

3. D E R I V A T I O N  O F  T H E  E Q U A T I O N  O F  S T A T E  

Equation (11) may be rewritten in terms of the dimensionless variables. 
If in this equation we employ Eq. (18) Io substitute for u, the result is 

( ~,.cr ] 2(52 -4- 2gx) 2q~(~ 2 -i--23x) (19) 
~ - / ~ +  (x~-!-3)'~ ~ : ( x + 3 )  5 

which can be solved through the use of the integrating factor, 

g._, 
= . . . .  

together with the boundary condition, 

Y 
o(�89 y) = (~ -i- ~i)(1 2 , - -  

Y 

derived from Eqs. (7) and (8). The sohltion is 

46 l 
t2o) (x--i- ,~) ] 

where 

(r(x, y)F(x) = (,1 ~, y)l"({) .- 2~bl(x) (22) 

[ "~ ,5: I- 2~t 
I ( X )  = J l :  - i - [ - ~ - ' ] ~ - )  ~-  F(t )d t  (23) 

Both Eqs. (7) and (9) may be expressed in terms of reduced variables, and 
Eq. (7) may be substituted into Eq. (9), eliminating G, so that an expression 
in or(�89 y) and O(r(~, y)/Ox is obtained. Combining this equation with Eq. (19) 



Statistical Thermodynamics of Curved Surfaces to Scaled Particle Theory t49 

at x ~ and Eq. (21) so as to d iminatc  ,r(~, y )  and 2<~(~,y)/i~x, we obtain 
an expression for the reduced pressure ~: 

4~ __ y - ! -  2y~(1 -. 3S) 8)'c~(I ~ 8) 
(1 - -  y)9_ : -(1--_--7~i ---i~,{-)~ (24)  

From Eqs. (7) and (I0) together with gq. (22), evaluated at x ,,.- I, we may 
eliminate ~r(l, y)  and obtain a second expression li)r 4): 

y( l  --y)(1 -I  8) F(I)  --F 2y2(1 -F 28) F(~) 

4 .... (1 --  4y)(l --  y)(l  -i-- 8)F(1) -~- 2y(1 .... y)(1 . 2a)F(�89 -- 8)'(I --  y )  i f1)  

(25) 

Equat ions (24) and (25) were solved simultaneously for ~ and 8 at 
tixed y. Numerical  solutions were obviously necessary and were limited to 
the range o f  ,3 between --0.5 and -t-0.5. The results are shown in Fig. I 
and 2, where three mechanically unstable solutions (a~/i) ,  < 0 for all y)  in 
the range 0.5 < 8 < 0.5 are not shown. 

The relative positions of  the two curves in Fig. 1 suggest that the upper 
curve corresponds to a fluid phase and the lower to a solid. Thus, as in 
Ref. 1, scaled particle theory again suggests the existence of  two phases for 
a rigid-sphere fluid. At best, however, the curve representing the solid phase 

i 
~ [  t j I .  i , j ~ , 

o.z 0.4 y 0.6 o.a 

Fig. 1. The  two stable pressure solutions of t::qs. (24) and (25). "Ihc broken port ion 
of 4,, is excluded since it has  ?~/~y < 0 and is therefore mechanically unstable.  
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i _J . . . . .  J_ . . . .  1 . . . . . . . . . .  ~ . . . . . . .  J_ . . . .  t I 
o . z  o . 4  y o . 6  o . a  

Fig. 2. The two ~ soJulions of Eqs. (24) and (25) corresponding to the two 
pressure solutions in Fig. 1. 

must  be very approximate  since thermodynamic  equations, such as Eq. (1 I), 
have becn derived specifically for fluid phases. 

The upper curve in Fig. 1 is readily established as an approximate 
version o f  the fluid equation o f  state through a comparison with machine 
computa t ion  results. The most  convenient way to accomplish this is to 
compare  directly with a Pad6 approximant  ~7~ which reproduccs the machine 
results. This cxpression for the reduced pressure o f  the fluid is 

4~L = y - f -  [(43' z i 16yah i 64y'ac').,(I -- 43'd : -  16y'~e)] (26) 

where b :-: 0.063507, c :~ 0.017329, d :  0.56149?,. amt e :: 0.08131. 
Alternatively, the upper curve o f  Fig. I may bc represented as a power scrics 
in y and the tirst five coefficients m~ty be compared with the known virial 
cocfficients for a rigid-sphere fluid (Ref. 6, p. II 1). In the virial expansion 
for ~L,  

't~,. : ~ '1',3"" (27) 

~ = 1, ~2---- 4, ~a--- 10, 4q " 1~;.3(~5, and 4'-, ": 28.24 are the exact 
rigid-sphere virial coefficients. 

The fluid curve in Fig. 1 is always slightly below the Pad6 approximant  
with an error  o f  about  1 . 6 ~  at the typical liqt, id density, o f y  := 0.25, aJld 
9.8 ~o at y == 0.45 near the limit of  validity of  the Pad6 approximant .  
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In order to obtain the virial coefficients for the fluid curve in Fig. I, 
it is necessary to represent 3 L and cr L as power series in y, 

~L(Y) .... ~ c3,,y" (28)  

crL(x,y)  :~ ~. % ( x ) ) ' "  (29) 
?t- I} 

We note that ~L --~" 0 as ) . . . .  0, sO that no constant term appears in Eq. (28). 
On the other hand, there is no a pr ior i  reason to exclude the constant term 
from Eq. (29), although we will iliad (as might be expected on physical 
grounds) that ~L--" 0 as y--~-O. Equations (27)-(29) are now substituted 
for q~s., 81., and (rs. in Eqs. (7)--(t 1), these equations of'course being rewritten 
in terms of dimensionless variables. The coetlieients in Eqs. (27)--(29) are 
then determined by equating equal powers of y and solving the set ol" 
simultaneous equations thereby generated. We find 

q~L(Y) = )' 4- 4Y 2 4- 10y "~ -I- 17.841y 4 ~- 24.20y 5 -F . . . .  (30) 

8t.(y) =-- (3 /8 )y  ~ + [ (27 /32)  - ( 3 / 4 ) I n  21y 3 -i . . . .  (31) 

crt.(x, y )  = - - ( 3 /2 ) y0  - -  [ (3/2)  In 2 x  '--- (9 /2) ] )  ,'~ --- [(3 In 2 - (75 /8) )  In x 

- - ( 9 / 4 x )  - -  (57 /8 )  ..... (51 /8)  In 2 - "  3(In 2 ) " ]y  j ! . . . .  (32) 

It is necessary to obtain only the third- and fourth-order terms in 
8~. and (s L , respectively, in order to obtain the fiflh-order term in q~L �9 From 
Eq. (30), we see daat the first three virial coefficients are exact, the fourth is 
low by 2 .9~ ,  and the fifth low by 14';ii. This error in the tilth virial 
coefficient renders Eq. (30) less accurate than the result of the original scaled 
particle theory, r for which the equation of state is 

~L = Y ( I  4 - y  Fy'-')..:(I - y ) a  (33) 

Of course, we have used only part of  the intormalion available in the various 
differential equations and boundary conditions now at our disposal, and it is 
possible that further work in which the requirement thai ~, depend only on y 
is relaxed would lead to a better equation of state. On the olher hand, the 
approximations in the original scaled particle theory are far more arbitrary 
and do not lead to an equation of slate for the solid phase. 

The negative portion of the solid-phase isotherm, with 6d?//)), . t  0, 

indicates that a tensile stress is required to reduce the bolid density below 
. ) ,~  0.29. The region for which /::,],/iy . 0, i.e., the broken portion of 
Fig. 1, is mechanically unstable and is excluded. 
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The appearance of two analytically distinct solutions 3 suggcsts the 
possibility of  computing the position of the solid-fluid phase transition by 
calculating the chemical potentials of both the fluid and the solid and 
equating the chemical potentials and the pressures at lhe point of transition. 
Unfortunately, the isotherm for the solid phase, as indicated earlier, is very 
approximate and so it is not in fact possible to pursue this program in a 
meaningful way. An attempt to follow this procedure yielded no point at 
which the chemical potentials and pressures were simultaneously equal. 

From the results contained in Figs. 1 and 2, we arc able to examinc the 
dependence of  ~r(x, y) and G(x, y) on x and 3'. These results are exhibited 
in Figs. 3--5, where Eq. (22) has been used for rr(x, y) and the reduced form 
of  Eq. (7), 

yG(x,y) :~ ~b : {,,(x. y)/[x :- ~0')]', (34) 

in order to specify G(x, y). The results in Fig. 3 are typical of the boundary 
tension and illustrate several general trends; (I) For both the fluid and solid, 
larger values o f  reduced cavity radius are required in order to reach a 
relatively constant boundary tension zts the density increases. (2) Thc fluid 
boundary tension is negative for all valucs of x and y (~c ::  0 for all y). 
(3) The solid boundary tension is posilive for y <-7 0.5 and negative for 
y 3> 0.5 03s < 0 for y < 0.5 and a s ?~ 0 for y -~: 0.5). (4) Positive boundary 

3 Integral equation approaches also give analytically distinct solutions for a hard-sphere 
system. See Alder and Hoover, ~ p. 100. 

Fig. 

r 
~s(X,O.3) 

=L(X,O, 3) 

3. 

I , I 1 I . . . . . .  ~' . . . . . . . . .  t t _ _ 1  . . . . .  1 
I 2 3 4 $ 6 7 8 9 

The solid a n d  fluid boundary  tensions as a function of x for y , 0.3 

and  y =- 0.6 from Eq. (22). 
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i Y - O , 7  

~ 
N I - -  

i / v.o.6 _.___ . - - 

. - - 

~ ~ .  i .Y-0.3 . . . . .  

I l I I 1 _ _  l I I i 
I Z ~ 4 5 X 

Fig. 4. The fluid G as a function of  x from Eq. (34). 

! 
! 2 X 3 4 S 

Fig. 5. The solid G as a function of x from Eq. (34). 
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tensions increase with increasing cavity ratlJilS anti negative lensions decrease 
with increasing radius. The restllis in I-igs. 4 and 5 show that as the density 
increases, larger values of  the reduced cavity radius are required in order  to 
reach a relatively constant  value of  (;. 

In the remainder  of  this papcr,  we discuss the cycle equat ion cL~ and in 
part icular  how it and the boundary  analog of theGibbs  adsorpt ion equal ion ~a~ 
can he used to test the validity and consistency of  our  method,  in which ~; 
is assumed to depend only on .r. We will call this method the lirst-order 
approx imat ion ,  designating the approximat ion  in which 6 .... 0 as the 
zeroth-Order approximat ion .  

4. T H E  C Y C L E  E Q U A T I O N  C O R R E C T  T O  
A L L  O R D E R S  O F  C U R V A T U R E  

The following is the cycle equat ion ,l~ it appeared in an unmodified 
form [see Eq. (37) of  Ref. 1]: 

~ r  

p J 4~r(r')~ d(r', p) dr' 
0 

f ,) .~ r �9 . i ~ [G(r, p') .~Tra'p G(a. f/)] ,/p' ', a . t . . . .  ~lrrra { o -- ~wa p-G(a, P)i 

~-. ~-=o~ .(2 (<,o'lo'~ f <,,, . r N~,,,,~,,,., ,~ , .  , .  o ,  .... ,,<:,<o . p ~ l  s,,, o,,._ ,o,... 

. -  4 ~ r r " . ~ = a  3 f~ o (1;*!P'){O[(O')" G(a, p')l:~p'j dp' (35) 

in this equation,  

fir* =: P'( r:~ a,,:l)i 3r"- (36) 

is the superficial density of  mat ter  adsorbed on the dividing surface co- 
incident with the surface of  the cavity and a,, is the radius of  the equimolecular  
dividing surface defined by 

N . . . . .  { ~ = (  R:; ..... a.a)p ' (37) 

P ~  and p ~ z )  are pair  specific distribution functions ~ith the cavity present 
and absent,  respectively. All terms in Eq. (35). except the second on the 
right, arc treated exactly as bcl\we, i.e., F.qs. (7). (10), and (36) are tlsed 1o 
eliminate G(r, p'), G(a, p'), and /-',*, respectively. The second term on the 
right of  Eq. (35) is rewritten as 

4 77- i~~ ' 

3k1 § j ,~ d~, 1 13~) 



Statistical Thermodynamics of Curved Surlaces to Scaled Particle Theory 15S 

~ahere 

/ . .  ~;~:,kr Jr  n"- dr ,  j N=[e' ,2 ' (r , ,  a, p') - -  P"~'(u, e')] sin 0,., J0z, ,/~z.~ 

In this equation, rl represents the distance of one of the particles revolved 
in the pair specific distribution function from the center of the cavity, while 
0z2 and ~t, are the polar and azimuthal angles locating particle 2 in a spherical 
coordinate system centered on particle I with z axis parallel to h ,  and a 
is a vector of lenght a whose directiotl is given by O,z and q~ra- The 
integration over the angles is over the complete ,,phere. 

In Ref. t, I was evaluated in terms of thermodynanfic quantities under 
the restriction that the cavity was large enough so timt only tirst-order 
contributions of curvature to the boundary tension had to be considered. 
In the present section, we shall not only evaluate / by a simpler method, but 
the tinal result will be shown to be correct to all orders of curvature. 

In Ref. 1, for the system under consideration, the derivative of the 
Hehnholtz free energy was evaluated by two independent routes leading 
to the expressions 

#)/:' 8rrr ~ 4rr 
,3r - a~ Ys ---r- (Ra- -  r:')p (40) 

b__F_ = _ 3 N k T  aakT ( dr  L j'N"I'~"(,', a ,p ' )s in  Or, dOvadr 2 
Or r 2r . " ' (41) 

In Ref. 1, these equations were Eqs. (47) and (59), respectively. Now consider 
a homogeneous reference system containing Nz particles whose Helmholtz 
free energy we denote by F2 �9 This system is chosen so that its uniform density 
is the same as the local density which prevails far from the cavity in the 
system in which the cavity is present. For the homogeneous system, we may 
write 

~k:a 3 N=k r aak T l" 
f dq j ,.\.'2'zP'~(a, p') sin 0,.,. dOj~. d~z z (42) 

Or 2r /- 

o r  

L . / ~  _.. 4rr(R a - -  r 3) 
P i)r r 

Equations (40)--(43) may be combined to yield 

8zrr z 3kT  (N 
- - - - r s  - - U , )  . . . . . .  

a s r 

Since 

(43) 

aakT2r J" drt j [N~-I,', ", . . . .  .- N,,"P ,'z,] sin 0 r, doz,, dcbiz 
(44) 

N -- Na =- 4rrr-Fr (45) 



|56 J.J. Vieceli and H.  Reiss 

Eq. (44) may be rewritten as 

I ---- 3r~I'r*k'l" (1 pkT2P ) 2r3YSa., (46) 

In this equation, terms have bcen neglected of ordcr N, ( / , . )2  and f'~* 
relative to terms of order N ~ and 1"IN, and terms of order (F~*) 2 relative 
to terms of order N. The detailed argt, ments revolving this neglect may be 
found in Ref. l, p. 1684. Eqnation (46) is identical to the corresponding 
equation [Eq. (90)] derived in Ref. I. There. however, an intermediate step 
of the derivation was involved whose validity was limited to situations in 
which only first-order contributions from curvature were important. Thus, 
in Ref. 1, it was assumed that Eq. (46) [gq. C~0) in Ref. 1] was also limited 
in validity to situations involving first-order contributions from curvature. 
However, the derivation we have presented leading to Eq. (46) is in no way 
limited, so that in fact it is now evident lhat Eq. (46) is generally valid even 
though it is identical to the corresponding equation derived in Ref. 1. 

Now, Eq. (35) may be rewritten as 

a~kT ~'"r2 [0 [ 2kTl @;~P I' ][ . \ ~'-~-lo'J[ ~ao / ] = j o d p ' l  -- ----p,l~JL r2 --ao 2 (47) 

where we have used Eq. (7) to eliminate G(r, p'), Fq. (10) to eliminate 
G(a, f),  Eq. (36) to eliminate F~*, Eqs. (38) and (46) for the second term 
on the right side of Eq. (35), and finally ditl'crentiated the result with respect 
to r. Equation (47) is equivalent to Eq. (94) of Ref. 1. It may be rewritten 
in more convenient form by differentiating with respect to p; using dinaension- 
less variables, we find 

x 2 X 2 ,, 1 ~'r 

where 

v = a./a =: x i S,,(a,y) 

We now refer to Eq. (48) as the cycle equation. 

1 (48) 
y 2 ~,y J 

(49) 

5. USE OF O T H E R  E Q U A T I O N S  IN  C O N N E C T I O N  W I T H  
THE FIRST-ORDER A P P R O X I M A T I O N S ;  C O N C L U S I O N S  

Both the accuracy of the first-order appr~.~ximation, Eq. (18), and the 
internal consistency of the various exact diffc:rential equations and boundary 
conditions thus far provided by scaled particle theory may be tested by 
attempting to generate similar results by using some of the relations not yet 
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employed for this purpose.  For  example,  to determine v, [he reduced radius 
o f  the equimolecular  surface, we can use Eqs. (30)--.(32) with Eq. (48), or 
with the boundary  layer analog of  the Gibbs  adsorpt ion equation,  c-~ 

In particular, both Eqs. (48) and (50) can be used to determine the x de- 
pendence of vn in the density expansion 

v(x,) ,)  = x ~ t,,Ix) y" (51) 

The method involves once again expressing all the dependent  variables as 
power  series in y, equat ing coefficients o f  the same power, and solving the 
resulting s imultaneous equations.  The first two coelficients from Eq. (48) are 

3 l vl(x) = --  ~ .-{-~--i (52) 

and 
147 9 9 m 31 / 2 

v o(x) - -  ~ -  ...... 4 In 2x . . . .  4-~- 1- ~y-2 -+- ~ -- x ~ (53) 

where I and m are integration constants.  These are determined from a new 
exact  condit ion derived f rom the compressibil i ty equat ion of  state/ '~ 

O p =  k T  
(54) 

Op 1 -t- jo "~ [pgl2)(rzz) --  p] 4rrri~.~ drzz 

where rl~ ( : -  It2 --  rz [) is the distance between the first particlc at r, and 
the second particle at r2,  while g~"~(rv2) is the generic pair correlation function. 
Since gC21(r12 ) = 0 for  rl~ < a and 

oo 

f [pg(2'(r12 ) - -  p] 4rrt'~2 ,It',,, -= 47m'-'/"~*(a) 
(1 

(55) 

Eq. (54) may  be rewritten, using dinlensionless variables and Eq. (36), as 

~,4, /0y = i / [J  - -  8 ) ,v3({ ,  y ) ]  (56) 

This is a new exact condit ion and another  indica!ion that so many  exact 
condit ions can be generated within the context o f  scaled particle theory 
that  there may  be others that  have not yet been discovered. From Eq. (56), 
by equat ing coefficients o f  powers  of  y, we find 

vx(1 ) = --17/12 = -I .42 (57) 
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and 

so that 

and 

v2(1) = (431/144) -- In 2 --= 2.30 (58) 

/ ~- 1/12 (59) 

m = (5/4) 1n 2 -- (963/72) 

The x derivative ofv  is not involved 

vl(x) = --3/2 

and 

t:2fx) = (51/8) (9/4) In 2x -- (9/4x) 

in which there are no integration constauts. At x ---= I, 

v~(l) = 3/2 . . . . . .  1.50 

and 

(60) 

n l!q. (50). As a result, we obtain directly 

(61) 

(62) 

(63) 

v2(l) - - I  (33/8) . . . . .  ((),'4 )In 2 . -  . . . .  2.57 (64) 

Comparison of  Eqs. (48) and (5(/) is now made by using Eqs. (57) and 
(58) [obtained from Eq. (48)] anti INs. (63) and (64) [obtained from l!q. 
(50)] to determine the distance c30(x,)') bclween tile cavity surface and the 
equimolecular surface at x = 1 and the typical liquid density y :-= 0.25. 
From Eq. (48), 

8o(1, 1/4) . . . .  0.211 (65) 

and from Eq. (50), 

~o(1, 1/4) == 0.214 (66) 

The agreement is remarkably good and indicates that the lirst-order ap- 
proximation is useful for the calculation not only of bulk properties but 
also of surface properties. 

As indicated earlier, the present theory might be improved by going 
to a higher order, i.e., by allowing ,3 to depend on x through some functional 
form involving as many as two unknown functions of y. One method for 
accomplishing this might involve taking higher-order x-dependent terms in 
the expansion of  u. For  each additional term in u, one additional condition 
on G would be required. This procedure might result in a better fluid equation 
of state. 
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A second possibility involves makillg no assumption at all, but 
at tempting to solve the set o f  partial difl'crclatial equaliolls (11), (48), and (50) 
using the boundary  conditions (8)-(t0) and (56). If this program could be 
carricd out. it would amount  to an cxacl dclcrmination o1" the rigid-sphere 
equation o f  state. 

Wc believe, at this point, that such a prograln cannot bc carried out 
with the equat ions thus far presented. Note thai in the more familiar integral 
equation approaches,  it is clearly very dilliclzlt to generate additional funda- 
mental equations, but it is not immcdi',ttcly obviotls lhat scaled particle 
theory sufl'crs from the same limitation, especially when the interplay between 
thermodynamics  and molecular theory is considered. It is now of  primary 
importance to determine what additional information is requircd and if 
scaled particle theory is capable o f  supl~lying it. 
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