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The thermodynamics of curved boundary Livers is combined with scaled
particie theory to determine the rigid-sphere cquation of state. In particular,
the boundary analog of the Gibbs--Tolman-Koenig-Buff cquation is solved
for a rigid-sphere fluid, using the approximation that the distance between
the surface of a cavity and its surface of tension is a tunction of the density
only (the first-order approximation).- This, in conjunction with several exact
conditions on G, the central function of scaled particle theory, leads to an
approximate rigid-sphere fluid equation of state and a qualitatively correct
rigid-sphere solid equation of state. The fluid isotherm compares favorably
with previous results (2.9 % crror in the fourth virial coefficient), but due
to the inaccuracy of the solid isotherm, no phasc transition is obtained. The
theory described here is to be contrasied with previous approaches in that
a less arbitrary functional form for G is assumed, and the surface of tension
and cavity surface are not assumed to be coincident. The “cycle equation™
of Rciss and Tully-Smith is rederived by a simpler route and shown to be
correct to all orders of cavity curvature. rather than only first order as was
originally thought. A new cxact condition, obtained from the compressibility
cquation of state, is used as a boundary condition for the “cycle equation”
to determine the location of the equimolecular surface. This molecular

Research supported under NSF Grant #GP-12408.

! Department of Chemistry, University of California. Los Angeles, California.

143

& 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011,

822/7/2-4



144 J. }J- Vieceli and H. Reiss

calculation compares favorably (discrepancy of -2 2 9) with a thermodynamic
calculation based on the boundary analog of the Gibbs adsorption equation
and indicates the accuracy and consistency of the first-order approximation.

KEY WORDS: Statistical thermodynamics of curved boundary layers; scaled
particle theory; equation of state; cycle equation; fluid-solid phase transition.

1. INTRODUCTION

In a recent paper, Reiss and Tully-Smith‘" applied some ideas derived from
the statistical thermodynamics of curved surfaces to scaled particle theory.
In a later paper, Vicceli and Reiss’® showed that Reiss and Tully-Smith
had employed the thermodynamic lormalism appropriate to interfacial
layers, whereas they should have developed a formalism specific to the
boundary layer involved in scaled particle theory. Although the entire
philosophy of Ref. 1 and most of its conclusions retain their validity, some
of the relations must be changed. These changes are not, however, quanti-
tatively large. Vieceh and Reiss'® developed the appropriate thermodynamic
formalism for boundary layers in general. Some results of their development
are: (1) a modified Gibbs-Tolman Koenig-Buff equation, (2) a modified
Gibbs adsorption equation, and (3) the elimination (rom the derivation of
any dependence on edge effects associated with conical or wedge-shaped
containers.

In the present paper, we reformulate the Reiss and Tuily-Smith appreach
using the more appropriate boundary layer formalism and obtain the correct
quantitative results. In addition, the theory is extended and analyzed beyond
the point to which it was carried by Reiss and Tully-Smith. For example,
we are now able to obtain two cquations of state for rigid spheres, one of
which, although necessarily very approximate (since the thermodynamic
formalism is not designed for solid surlaces), corresponds to the solid phase.
In addition, a new exact condition obtained from the compressibility equation
of state is derived. Several other results ol direct importance to the statistical
thermodynamics of curved surfaces arc also obtained and will be discussed
in the body of the text.

2. SOME PRELIMINARY RELATIONS

Consider a system of N rigid spheres of diameter @ in a spherical
container of volume V, with radius R. at temperature 7. A basic cquation
of scaled particle theory relating molccular and thermodynamic variables
for this system is'®

awler = dnrikTpGlr, p) )
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In this equation, W is the reversible isothermal work required to produce
a spherical cavity of radius r free of particle centers, p is the number density
(= N/V) of rigid spheres, k is the Boltzmann constant, and 4=rpG(r, p) dr
is the probability that there is a particle center in the spherical sheil between
r and r - dr when the cavity is known to be free of particle centers. Note
that it has been customary to think of the cavity (an ““r-cule™) as being
generated by another nigid sphere of diameter b, such that r = (a 4 b)/2. it
1s implicitly assumed that besides 7, N and V' are also held constant. Since
the system is macroscopic, we can, without loss of generality, place the
cavity at the center of the container, a sphere of radius R, and define the
geometric variables

Vy = gnla? - r?) )
Vy = (R~ a) ©)
Ay = dma? “)

where a, is the radius of another sphere, concentric with both the cavity
and the container, which will play the role of a Gibbs dividing surface.
In fact, the subscript s implies a particular dividing surface which, following
Gibbs, we will call the “surface of tension™. Clearly, ¥ is the volume between
the cavity and the surface of tension, V, is the volume between the container
wall and the surface of tension, while 4, is the arca of the surface of tension.
From Ref. 2, the change in Helmholtz free energy of a portion of the fluid
contained within fixed a solid angle and having 7" and N fixed is given by

dF = —p,dVy — pdV, = y,dA, ®)

where y, 1s the boundary tension associated with the surface of tension,
and a, has been chosen so that the following relation is true:

P —p i 2ya, ()

In Eqgs. (5) and (6), p, and p are to be interpreted as the normal stresses
exerted on the surfaces at » and R, respectively. Although under certain
conditions, p, and p may be interpreted as (and in fact may be) the pressures
within the volumes ¥, and V,, respectively, they need not be, and their
strict definitions remain the normal stresses referred to above (see Ref. 2).
Under these conditions, the change in Helmholtz free energy is equal to the
work dW appearing in Eq. (1), and under the condition of constant total
volume, Egs. (1), (5), and (6) may be combined to yield

- pkTG(r, p) = p + (2y.Ja,) M
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This is an exact thermodynamic expression for G, except when the physical
situation does not allow a, to be positive. in which case Eq. (7) is meaningless.
Equation (7) contains the unknown quantitics p, y,, and a,, and for our
purposes, replaces Eq. (1) as the basic scaled particle theory relation be-
tween molecular and thermodynamic variables.

In Ref. 3 [see Eqgs. (14), (18), (19). (34). and (38)], several other exact
relations involving G(r, p) are derived. Two ol these are

G(r, p) = (1 — §mrip), r=oaj? (8)
oG(r, pYfor = darip/(l — Sarip), rooaj2 )

The relation of G to the hard-sphere equation of state is obtained by noting
the cquivalence of G(a, p) and the contact generic pair correlation function,®

p = pkT = 3akTa*n Gy, p) (10)

From Ref. 2, the boundary layer analog of the Gibbs- Tolman-Koenig-
Buff equation is

-] (),

a P
a, ver o/, cr /,

The appropriate Gibbs adsorption cquation, also derived in Ref. 2, will
be discussed in Section 5 1n connection with the “cycle equation™ of Section 4.

Previously, two approaches have been used in determining the equation
of state of a rigid-sphere fluid using scaled particle theory. The carliest
approach® involved the assumption that G could be expanded in inverse
powers of r (even though it was known that & was nonanalytic in r, having
singularities in the second- and higher-order derivatives). Numerous exact
boundary conditions on G [especially [gs. (8)-(10)] were then used to
determine the density-dependent cocflicients in this expansion. and hence
the equation of state, Although this approach gave very accurate virial
coeflicients, it did involve using a specific assumed functional form for
G(r, p). This form is known to be correct in the limit of large r but is otherwise
of unkonwn validity. In addition, there is no way to extract the solid- fluid
phase transition suggested by both Monte Carlo'™ and molecular dynamics
computations.®

The later approach' endeavors to make no assumption (although it
actually fails in this respect since some assumption must eventually be
made) concerning the form of ¢, but instead attempts to rely on kqgs. (7)-(11)
to Specify that form. A seemingly more physically meamngful assumption
(than that of expandability in inverse powers of r with truncation after the
quadratic term) in connection with this sct of cquations is to assume that
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the surface of tension and cavity surface are coincident since there are
independent indications that they differ in position by only a small fraction
of a rigid-spherc diameter. When applied to Eqs. (7), (8), (10), and (1), this
assumption predicts a boundary tension independent of cavity radius,

o= -3p2(1 - )i - p) (12)
and an equation of state
¢ = y(I 4y U 2y) (13)

where we have used the dimensioniess variables

o = waty S3KT (14)
¢ . wadipiokT (15
y = 77(13,[),"() (16)

Equation (13) gives the first three virial cocificients exactly and an error
of approximately 209, in thc fourth.® It also seems to indicate a thermo-
dynamically unstable point at y = 0.5V and therctore a solid-fluid phase
transition. The work described throughout the vemainder of this paper is
aimed at continuing this later approach employing a less severe approximation
for the location of the surface of tension. Furthermore, we apply Eq. (9)
as well as Egs. (7), (8), (10), and (11).

In our treatment, we allow the surface of tension to be displaced by
a reduced distance § from the surface of the cavity, thus relaxing the scvere
restriction that the two surfaces be coincident. However, we assume that §
depends only on reduced density p and not upon cavity radius r. The justifica-
tion for this assumption lies in the fact that we apply our equations only
over a limited range of r between r : : a/2 and «. where ¢ is the diameter of
the rigid-sphere molecule. Even so, 3 is not stricily independent of » and
errors are theretore generated. Further progress can be made by allowing
5 to depend on r in a form which depends upon at least two additional
functions of density; there is enough information n our set of equations
to cover that case. However, we have not yet advanced the theory that far.

2 If virial coefficients are the only desired information, scaled particle theory, with an
assumed form for G, gives the fourth and Hifth virial coethicients with an accuracy of 2 and
7°%, respectively (see Table I of Ref. 4, entry F). Note that a numerical error in Eq.
(127) of Ref. 1 (24.3y* should be replaced by 22vY) led to a 327, error instead of the
actual 20% error in the fourth virial coefficient. The Aifth virial coeflicient predicted by
Eq. (13) is 63 % too high.
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In general, we work with a reduced cavity radius x (— r/a) and define
u = aja = x 4 8(x, y) (7)

In our approximation
= x ;i ) (18)

In the next section, this approximation is used in the determination of
&), 8(»), G(x,¥), olx,y), and the virial coefficients. In Section 4, the
“cycle equation” of Reiss and Tully-Smith® is rederived by a simpler route
and is shown to be valid to all orders of curvature. In Section 5, the nature
of the approximation in Eq. (18) is examined; the cycle equation and the
boundary layer analog for the Gibbs adsoption equation are both used to
determine the location of the equimolecular dividing surface.

3. DERIVATION OF THE EQUATION OF STATE

Equation (11) may be rewritten in terms of the dimensionless variables.
If in this equation we employ Eq. (18) to substitute for u, the result is

2¢(8°% - 28x)

o 2(8% -+ 24x) . e
(—3}-)1 (x -Q_:_S)f*' oe T (x + 8)2 (19)
which can be solved through the use of the integrating factor,
i o? 45
F(x) = exp l.'(T S8R (x -+ 8) ] (20)
together with the boundary condition,
1 N }"
oh,y) = (4 +8) (72 — ¢) 21)
derived from Egs. (7) and (8). The solution is
o(x, p)F(x) = oy, ))(3) — 2¢1(x) (22)
where
109 = [ 2522 py (23)

Jia (15 0)?

Both Egs. (7) and (9) may be expresscd in terms of reduced variables, and
Eq. (7) may be substituted into Eq. (9), eliminating G, so that an expression
in o(%, y) and @o(}, y)/@x is obtained. Combining this equation with Eq. (19)
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at x ) and Eq. (21) so as to eliminate o(}, v) and 20(}, y)/¢'x, we obtain
an expression for the reduced pressure ¢:

g7 2138 8ydl 8
(1 —yy S (= 20)

(24)

From Eqgs. (7) and (10) together with Eq. (22), evaluated at x ~- I, we may
eliminate o(1, y) and obtain a second expression {or ¢:

4 y(L - 48 F) + 2y +28) F()
T (=41 — )3+ ) F(1) - 2y(1 — )3+ 28) F(3) - 83(1 — ») [(D)
(25)

Equations (24) and (25) were solved simultaneously for ¢ and § at
fixed y. Numerical solutions werc cbviously necessary and were limited to
the range of & between —0.5 and +-0.5. The results are shown in Fig. |
and 2, where three mechanically unstable solutions (¢¢/¢y < 0 for all y) in
the range - 0.5 << & < 0.5 are not shown.

The relative positions of the two curves in Fig. | suggest that the upper
curve corresponds to a fluid phase and the lower to a solid. Thus, as in
Ref. 1, scaled particle theory again suggests the existence of two phases for
a rigid-sphere fluid. At best, however, the curve representing the solid phase

-

i2

10

Fig. 1. The two stable pressure solutions of Eqgs. (24) and (25). The broken portion
of ¢, is cxcluded since it has ¢é.¢y <2 0 and is therefore mechanically unstable.
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Fig. 2. The two § solutions of Egs. (24) and {25) corresponding to the two
pressure solutions in fig. 1.

must be very approximate since thermodynamic equations, such as Eq. (11),
have been derived specifically for fluid phascs.

The upper curve in Fig. 1 is readily established as an approximate
version of the fluid equation of state through a comparison with machine
computation results. The most convenient way to accomplish this is to
compare directly with a Padé approximant'™ which reproduces the machine
results. This cxpresstion for the reduced pressure of the fluid is

b =y -+ [y - 16p°h 1+ 64pie) (1 -- dyd -+ 16y%)] (26)

where & = 0.063507, ¢ = 0.007329, o - 0.561493, and ¢ = 0.0813].
Alternatively, the upper curve of Fig. | may be represented as a power scries
in y and the first five coefficients may be compared with the known virial
cocfficients for a rigid-sphere fluid (Ref. 6, p. 111). In the virial expansion
for ¢, ,
'f)l. X (ll)ﬂ.“" (27)
. wod

dr=1, ¢y=14, ;= 10, ¢, - 18365 and ¢; = 28.24 are the cxuct
rigid-sphere vinal coetficients.

The fluid curve in Fig. | is always stightly below the Padé approximant
with an error of about 1.6 % at the typical liquid density of y == 0.25, and
9.8 % at y == 0.45 near the limit of validity of the Padé approximant.
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In order to obtain the virial coefficients for the fluid curve in Fig. I,
it is necessary to represent §; and o, as power serics in y,

81.())) = Z Sny” (28)
71
ol(X,y) 7 Y oalx) (29)

We note that 6, — 0 as y - 0, so that no constant term appears in Eq. (28).
On the other hand, there is no a priori reason to exclude the constant term
from Eq. (29), although we will find (as might be expected on physical
grounds) that o, ->0 as y-- 0. Equations (27)-(29) are now substituted
for ¢, ., 6, ,and o, in Egs. (7)--(11), these equations of course being rewritten
in terms of dimensionless variables. The cocflicients in Eqs. (27)-(29) are
then determined by equating equal powers of y and solving the set of
simultancous equations thereby gencrated. We find

Gu(y) = ¥ + 4% -+ 10p° - 17.841)% 4 242005 -+ -+ (30)
8.(y) = (3/8)y* + [(27/32) — (3/4) In 2]y° - - (31)

a(x,y) — —3/2)* — [(3/2)In 2x - (9/)]y* - [(3In2 — (75/8)) In x
—-(9/4x) — (57/8) -~ (S1/8)In 2 -+ 3(In 2)2]y* + - (32)

It is necessary to obtain only the third- and fourth-order terms in
8, and o, , respectively, in order to obtain the fifth-order term in ¢, . From
Eq. (30), we see that the first three virial coefficients are exact, the fourth is
low by 2.9%, and the fifth low by 14%,. This error in the fifth virial
coefficient renders Eq. (30) less accurate than the result of the original scaled
particle theory,®# for which the equation of state is

b=y +y Lyl -y (33)

Of course, we have used only part of the information available in the various
differential equations and boundary conditions now at our disposal, and it is
possible that further work in which the requirement that & depend only on p
is relaxed would lead to a better cquation of state. On the other hand, the
approximations in the original scaled particle theory are far more arbitrary
and do not lead to an equation of statc for the solid phase.

The negative portion of the solid-phase isotherm, with §¢/8y - 0,
indicates that a tensile stress is required to reduce the solid density below
y == 0.29. The region for which ¢¢/ey - 0, ic., the broken portion of
Fig. 1, is mechanically unstable and is excluded.
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The appearance of two analytically distinct solutions? suggests the
possibility of computing the position of the solid-fluid phase transition by
calculating the chemical potentials of both the fluid and the solid and
equating the chemical potentials and the pressures at the point of transition.
Unfortunately, the isotherm for the solid phase, as indicated earlier, is very
approximate and so it is not in fact possible to pursue this program in a
meaningful way. An attempt to follow tius procedure yiclded no point at
which the chemical potentials and pressures were simultaneously equal.

From the results contained 1n FFigs. T and 2, we arc able to examine the
dependence of o(x, y) and G(x, y) on x and y. These results are exhibited
in Figs. 3-5, where Eq. (22) has been used for o(x, ) and the reduced form
of Eq. (7),

yGlx,y) == b+ folx p)/[x - 8] (34)

in order to specify G(x, y). The resuits in Fig. 3 are typical of the boundary
tension and illustrate several general trends; (1) For both the fluid and sohd,
larger values of reduced cavity radius are required in order to reach a
relatively constant boundary tension as the density increases. (2) The fluid
boundary tension is negative for all values of x and y (5, .2 0 for ali »).
(3) The solid boundary tension is positive for y <7 0.5 and negative for
y > 0585 <O0fory < 0.5and 35 = 0 for y = 0.5). (4) Positive boundary

3 Integral equation approaches also give analytically distinct solutions for a hard-sphere
system. See Alder and Hoover,® p. 100.

vs(X_O.l)
Qb=
vL(X.O. 3)
n =
as(x,o,s)
oL
L}
1)
w —
<
o
Qb
1 : 1 1 S 1 t 1 1

] 2 3 s % e 7 8 9

Fig. 3. The solid and fluid boundary tensions as a function of x for y -~ 0.3
and y = 0.6 from Eq. (22).
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Py

< ° 4 )

Fig. 4. The fluid G as a function of x from Eq. (34).

30

Fig. 5. The solid G as a function of x from Eq. (34).
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tensions increase with increasing cavity radius and negative tensions decrcase
with increasing radius. The results in I-igs. 4 and 5 show that as the density
increases, larger values of the reduced cavity radius are required in order to
reach a relatively constant value of (.

In the remainder oi this paper, we discuss the cycle equation* and in
particular how it and the boundary analog of the Gibbs adsorption equation'®
can be used to test the validity and consistency of our method, in which &
is assumed to depend only on 1. We will call this method the first-order
approximation, designating the approximation in which 6 == 0 as the
zeroth-order approximation.

4, THE CYCLE EQUATION CORRECT TO
ALL ORDERS OF CURVYATURE

The following is the cycle equation as 1t appeared 1in an unmodified
form [sec Eq. (37) of Ref. 1]:

p J; 4w (r 2 G(r', p) dr’
— g [G(r, ) — §matp'Gla. p]dp’ © §ma%p*Gla, p)!
T e ’ 0 (dp'lp") f dr, ‘ NEPE(r, 8, p) - PD(a, p')] sin By, dby,
— 4mr*ina® {: (I3 p"Nel(p')* Gla, ph)ep's dp’ (35)

In this equation,
I = p'(r* a,)/3r® (36)

is the superficial density of matter adsorbed on the dividing surface co-
incident with the surface of the cavity and ¢, is the radius of the equimolecular
dividing surface defined by

N == 35 R — a)p’ (37

P'® and P are pair specific distribution functions with the cavity present
and absent, respectively. All terms in Fq. (35). except the second on the
right, arc treated exactly as before, i.c., Egs. (7). (10), and (36) are used to
climinate G(r, p"), G(a, p'), and I',*, respectively. The second term on the
right of Eq. (35) is rewritten as

dm_ordp’

wr |, o
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where

~R o

I 4akT | r¥dry | NPR(ry 2, p) — Pa, p)] sin 0y, dby, deby,
i (39)
In this equation, ry represents the distance of onc of the particles involved
in the pair specific distribution function from the center of the cavity, while
0,, and ¢, are the polar and azimuthal angles locating particle 2 in a spherical
coordinate system centered on particle | with z axis parallel tor,, and a
is a vector of lenght @ whose direction is given by 0,, and ¢,,. The
integration over the angles is over the compicte wphere.

In Ref. I, £ was evaluated in terms of thermodynamic quantities under
the restriction that the cavity was large enough so that only first-order
contributions of curvature to the boundary tension had to be considered.
In the present section, we shall not only evaluaic / by a simpler method, but
the final result will be shown to be correct to all orders of curvature,

In Ref. 1, for the system under considcration, the derivative of the
Helmholtz {ree enecrgy was evaluated by two independent routes leading
to the expressions

oF  8aur? 47 .. .

s ey = =L (R r)p (40)
oF 3% -

(di': o 3—Nrﬂﬂ - %IE'L [ dr, J NePEry,a,p')sin by dOy, déy,

(41
In Ref. 1, these equations were Ligs. (47) and (59), respectively. Now consider
a homogeneous refercnce system containing N, particles whose Helmholtz
free energy we denote by F, . This system is chosen so that its uniform density
is the same as the local density which prevads far from the cavity in the
system in which the cavity is present. For the homogencous system, we may
write

L 3L .

f(fr_ - _ 3N;'kT_ azljf.jdrljl NZPO, ) sin O,y db, dbry (42)
or

T, 4m(RS — %)

%}—f = —(;—‘—P (43)

Equations (40)-(43) may be combined to yield

2 3 - -
—8—5L-'ys S }-l;z(N—Ng) —12"7? | dry | V2P - N2P®sin 6y, dBy, d,
: (44)
Since

N — N, = el * (45)
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Eq. (44) may be rewritten as

-3a
I= 3r21’,*k'1‘(1 . 7§f7) 2'a /- (46)
In this equation, terms have been negiccted of order N, (I,*)? and T, *
relative to terms of order N2 and I’.* ¥, and terms of order (I",*)? relative
to terms of order N. The detailed arguments involving this neglect may be
found in Ref. 1, p. 1684. Equation (46) 1s identical to the corresponding
equation [Eq. (90)] derived in Ref. I. There. however, an intermediate step
of the derivation was involved whose validity was limited to situations in
which only first-order contributions from curvature were important. Thus,
in Ref. 1, it was assumed that Eq. (46) [[Eg. (Y0) in Ref. 1] was also limited
in validity to situations involving first-order contributions from curvature.
However, the derivation we have presented leading to Eq. (46) is in no way
limited, so that in fact it is now evident that Eq. (46) is generally valid even
though it 1s identical to the corresponding equation derived in Ref. I.
Now, Eq. (35) may be rewritten as

Zkr = f: dp' [1 — %fo—,f ;)"ZTJ [ - aat Fea ),,,] (47)

where we have used Eq. (7) to eliminate G(r, p'), Eq. (10) to eliminate
G(a, p'), Eq. (36) to eliminate I'.*, Egs. (38) and (46) for the second term
on the right side of Eq. (35), and finally differentiated the result with respect
to r. Equation (47) is equivalent to Eq. (94) of Ref. I. It may be rewritten
in more convenient form by differentiating with respect to p; using dimension-
less variables, we find

2 B2l -1 e

where

r = au/I(l =X Sn("r )’) (49)

We now refer to Eq. (48) as the cycle equation.

5. USE OF OTHER EQUATIONS IN CONNECTION WITH
THE FIRST-ORDER APPROXIMATIONS; CONCLUSIONS

Both the accuracy of the first-order approximation, Eq. (18), and the
internal consistency of the various exact differential equations and boundary
conditions thus far provided by scaled particle theory may be tested by
attempting to generate similar results by using some of the relations not yet
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employed for this purpose. For example, to determine v, the reduced radius
of the equimolecular surface, we can usc Egs. (30)-(32) with Eq. (48), or
with the boundary layer analog of the Gibbs adsorption equation,‘®

e e B TR BT

In particular, both Eqs. (48) and (50) can be used to determine the x de-
pendence of v, in the density expansion

p(X, y) == X 1Y r,lx) (51

The method invoives once again expressing all the dependent variables as
power series in y, equating coefficients of the same power. and solving the
resulting simuitaneous equations. The first two cocflicients from Eq. (48) are

3 !
v(x) = — 2 +- pey (52)
and
147 9 9 om 3 2
o) = g2y — g G g (53)

where / and m are integration constants. These ure determined from a new
exact condition derived from the compressibility equation of state,®
9 kT <
£~ 12) (54)
op + .‘0 (pg®(ry,) — pl ‘””12 d’

where ry, (== | ry — 1y 1} is the distance between the first particle at r; and
the second particle at r, , while g‘®(r,,) is the gencric pair correlation function.
Since g®(ry,) = O for r;, < a and

f [pg®(ry,) — pldmrd, dr,, - 4na*l *(a) (55)
a
Eq. (54) may be rewritten, using dimensionless variables and Eq. (360), as

adfoy = 1[I - 8ye’(l, y)] (56)

This is a new exact condition and another indication that so many exact
conditions can be generated within the context of scaled particle theory
that there may be others that have not yet been discovered. From Eq. (56),
by equating coeflicients of powers of y, we find

v(1) = —17/12 = -1.42 (57)
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and
vy(1) = (431/144) — In 2 = 2.30 (58)
so that
{— 112 (59)
and
m = (5/4) In 2 - (963/72) (60)

The x derivative of v is not involved in Liq. (50). As a result, we obtain directly
y(x) = —3/2 61)
and
vo{x) = (51/8) - (9/4) In 2x -~ (9/4x) (62)

in which there are no integration constants. At x == |,

p; () = 32 = -.150 (63)
and
vo(1) = (33/8) — (¥ d)yIn 2 .= —2.57 (64)

Comparison of Egs. (48) and (50) is now made by using Egs. (57) and
(58) [obtained from Eq. (48)] and Lgs. {63) and (64) [obtained from !g.
(50)] to determine the distance §y(x, ') between the cavity surface and the
equimolecular surface at x = | and the typical liquid density y == 0.25.
From Eq. (48),

8q(1, 1/4) = - 0.211 (65)

and from Eq. (50),
So(1, 1/4) == - 0.214 (66)

The agreement is remarkably good and indicates that the first-order ap-
proximation is useful for the calculation not only of bulk properties but
also of surface properties.

As indicated earlier, the present theory might be improved by going
to a higher order, i.c., by allowing & to depend on x through some functional
form involving as many as two unknown functions of y. One method for
accomplishing this might involve taking higher-order x-dependent terms in
the expansion of u. For each additional term in u, one additional condition
on G would be required. This procedure might result in a better fluid equation
of state.
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A second possibility involves making no assumption at all, but
attempting to solve the set of partial differential cquations (11). (48), and (50)
using the boundary conditions (8)-(10) and (36). i’ this program could be
carricd out. it would amount to an cxact determination of the rigid-sphere
equation of state.

We believe, at this point, that such a program cannot be carried out
with the equations thus far presented. Notc that in the more familiar integral
cquation approaches, it is clearly very diflicult (o generate additional funda-
mental equations, but it 1s not immediately obvious that scaled particle
theory sufters from the same limitation, especiaily when the interplay between
thermodynamics and molecular theory is considered. It 1s now of primary
importance to determine what additional information is required and if
scaled particle theory 15 capabie of supplying it.
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